34 research outputs found

    Bio-Inspired Tools for a Distributed Wireless Sensor Network Operating System

    Get PDF
    The problem which I address in this thesis is to find a way to organise and manage a network of wireless sensor nodes using a minimal amount of communication. To find a solution I explore the use of Bio-inspired protocols to enable WSN management while maintaining a low communication overhead. Wireless Sensor Networks (WSNs) are loosely coupled distributed systems comprised of low-resource, battery powered sensor nodes. The largest problem with WSN management is that communication is the largest consumer of a sensor node’s energy. WSN management systems need to use as little communication as possible to prolong their operational lifetimes. This is the Wireless Sensor Network Management Problem. This problem is compounded because current WSN management systems glue together unrelated protocols to provide system services causing inter-protocol interference. Bio-inspired protocols provide a good solution because they enable the nodes to self-organise, use local area communication, and can combine their communication in an intelligent way with minimal increase in communication. I present a combined protocol and MAC scheduler to enable multiple service protocols to function in a WSN at the same time without causing inter-protocol interference. The scheduler is throughput optimal as long as the communication requirements of all of the protocols remain within the communication capacity of the network. I show that the scheduler improves a dissemination protocol’s performance by 35%. A bio-inspired synchronisation service is presented which enables wireless sensor nodes to self organise and provide a time service. Evaluation of the protocol shows an 80% saving in communication over similar bio-inspired synchronisation approaches. I then add an information dissemination protocol, without significantly increasing communication. This is achieved through the ability of our bio-inspired algorithms to combine their communication in an intelligent way so that they are able to offer multiple services without requiring a great deal of inter-node communication.Open Acces

    Bioans: bio-inspired ambient intelligence protocol for wireless sensor networks

    Get PDF
    This paper describes the BioANS (Bio-inspired Autonomic Networked Services) protocol that uses a novel utility-based service selection mechanism to drive autonomicity in sensor networks. Due to the increase in complexity of sensor network applications, self-configuration abilities, in terms of service discovery and automatic negotiation, have become core requirements. Further, as such systems are highly dynamic due to mobility and/or unreliability; runtime self-optimisation and self-healing is required. However the mechanism to implement this must be lightweight due to the sensor nodes being low in resources, and scalable as some applications can require thousands of nodes. BioANS incorporates some characteristics of natural emergent systems and these contribute to its overall stability whilst it remains simple and efficient. We show that not only does the BioANS protocol implement autonomicity in allowing a dynamic network of sensors to continue to function under demanding circumstances, but that the overheads incurred are reasonable. Moreover, state-flapping between requester and provider, message loss and randomness are not only tolerated but utilised to advantage in the new protocol

    Formal Verification of Synchronisation, Gossip and Environmental Effects for Wireless Sensor Networks

    Get PDF
    The Internet of Things (IoT) promises a revolution in the monitoring and control of a wide range of applications, from urban water supply networks and precision agriculture food production, to vehicle connectivity and healthcare monitoring. For applications in such critical areas, control software and protocols for IoT systems must be verified to be both robust and reliable. Two of the largest obstacles to robustness and reliability in IoT systems are effects on the hardware caused by environmental conditions, and the choice of parameters used by the protocol. In this paper we use probabilistic model checking to verify that a synchronisation and dissemination protocol for Wireless Sensor Networks (WSNs) is correct with respect to its requirements, and is not adversely affected by the environment. We show how the protocol can be converted into a logical model and then analysed using the probabilistic model-checker, PRISM. Using this approach we prove under which circumstances the protocol is guaranteed to synchronise all nodes and disseminate new information to all nodes. We also examine the bounds on synchronisation as the environment changes the performance of the hardware clock, and investigate the scalability constraints of this approach

    The limits of LoRaWAN in event-triggered wireless networked control systems

    Get PDF
    Wireless sensors and actuators offer benefits to large industrial control systems. The absence of wires for communication reduces the deployment cost, maintenance effort, and provides greater flexibility for sensor and actuator location and system architecture. These benefits come at a cost of a high probability of communication delay or message loss due to the unreliability of radio-based communication. This unreliability poses a challenge to contemporary control systems that are designed with the assumption of instantaneous and reliable communication. Wireless sensors and actuators create a paradigm shift in engineering energy-efficient control schemes coupled with robust communication schemes that can maintain system stability in the face of unreliable communication. This paper investigates the feasibility of using the low-power wide-area communication protocol LoRaWAN with an event-triggered control scheme through modelling in Matlab. We show that LoRaWAN is capable of meeting the maximum delay and message loss requirements of an event-triggered controller for certain classes of applications. We also expose the limitation in the use of LoRaWAN when message size or communication range requirements increase or the underlying physical system is exposed to significant external disturbances

    Control communication co-design for wide area cyber-physical systems

    Get PDF
    Wide Area Cyber-Physical Systems (WA-CPSs) are a class of control systems that integrate low-powered sensors, heterogeneous actuators and computer controllers into large infrastructure that span multi-kilometre distances. Current wireless communication technologies are incapable of meeting the communication requirements of range and bounded delays needed for the control of WA-CPSs. To solve this problem, we use a Control-Communication Co-design approach for WA-CPSs, that we refer to as the C^3 approach, to design a novel Low-Power Wide Area (LPWA) MAC protocol called Ctrl-MAC and its associated event-triggered controller that can guarantee the closed-loop stability of a WA-CPS. This is the first paper to show that LPWA wireless communication technologies can support the control of WA-CPSs. LPWA technologies are designed to support one-way communication for monitoring and are not appropriate for control. We present this work using an example of a water distribution network application which we evaluate both through a co-simulator (modelling both physical and cyber subsystems) and testbed deployments. Our evaluation demonstrates full control stability, with up to 50% better packet delivery ratios and 80% less average end-to-end delays when compared to a state of the art LPWA technology. We also evaluate our scheme against an idealised, wired, centralised, control architecture and show that the controller maintains stability and the overshoots remain within bounds

    Design and evaluation of jamming resilient cyber-physical systems

    Get PDF
    There is a growing movement to retrofit ageing, large scale infrastructures, such as water networks, with wireless sensors and actuators. Next generation Cyber-Physical Systems (CPSs) are a tight integration of sensing, control, communication, computation and physical processes. The failure of any one of these components can cause a failure of the entire CPS. This represents a system design challenge to address these interdependencies. Wireless communication is unreliable and prone to cyber-attacks. An attack upon the wireless communication of CPS would prevent the communication of up-to-date information from the physical process to the controller. A controller without up-to-date information is unable to meet system's stability and performance guarantees. We focus on design approach to make CPSs secure and we evaluate their resilience to jamming attacks aimed at disrupting the system's wireless communication. We consider classic time-triggered control scheme and various resource-aware event-triggered control schemes. We evaluate these on a water network test-bed against three jamming strategies: constant, random, and protocol aware. Our test-bed results show that all schemes are very susceptible to constant and random jamming. We find that time-triggered control schemes are just as susceptible to protocol aware jamming, where some event-triggered control schemes are completely resilient to protocol aware jamming. Finally, we further enhance the resilience of an event-triggered control scheme through the addition of a dynamical estimator that estimates lost or corrupted data
    corecore